Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Inclusive and differential cross-section measurements of tt¯Z production in pp collisions at s = 13 TeV with the ATLAS detector, including EFT and spin-correlation interpretations

Aad, G. ; Åkesson, T.P.A. LU orcid ; Doglioni, C. LU ; Ekman, P.A. LU ; Hedberg, V. LU ; Herde, H. LU orcid ; Konya, B. LU ; Lytken, E. LU orcid ; Poettgen, R. LU orcid and Simpson, N.D. LU , et al. (2024) In Journal of High Energy Physics 2024(7).
Abstract
Measurements of both the inclusive and differential production cross sections of a top-quark-top-antiquark pair in association with a Z boson (tt¯Z) are presented. Final states with two, three or four isolated leptons (electrons or muons) are targeted. The measurements use the data recorded by the ATLAS detector in pp collisions at s = 13 TeV at the Large Hadron Collider during the years 2015–2018, corresponding to an integrated luminosity of 140 fb−1. The inclusive cross section is measured to be σtt¯Z = 0.86 ± 0.04 (stat.) ± 0.04 (syst.) pb and found to be in agreement with the most advanced Standard Model predictions. The differential measurements are presented as a function of a number of observables that probe the kinematics of the... (More)
Measurements of both the inclusive and differential production cross sections of a top-quark-top-antiquark pair in association with a Z boson (tt¯Z) are presented. Final states with two, three or four isolated leptons (electrons or muons) are targeted. The measurements use the data recorded by the ATLAS detector in pp collisions at s = 13 TeV at the Large Hadron Collider during the years 2015–2018, corresponding to an integrated luminosity of 140 fb−1. The inclusive cross section is measured to be σtt¯Z = 0.86 ± 0.04 (stat.) ± 0.04 (syst.) pb and found to be in agreement with the most advanced Standard Model predictions. The differential measurements are presented as a function of a number of observables that probe the kinematics of the tt¯Z system. Both the absolute and normalised differential cross-section measurements are performed at particle level and parton level for specific fiducial volumes, and are compared with NLO+NNLL theoretical predictions. The results are interpreted in the framework of Standard Model effective field theory and used to set limits on a large number of dimension-6 operators involving the top quark. The first measurement of spin correlations in tt¯Z events is presented: the results are in agreement with the Standard Model expectations, and the null hypothesis of no spin correlations is disfavoured with a significance of 1.8 standard deviations. © The Author(s) 2024. (Less)
Please use this url to cite or link to this publication:
author
; ; ; ; ; ; ; ; and , et al. (More)
; ; ; ; ; ; ; ; ; ; and (Less)
author collaboration
organization
publishing date
type
Contribution to journal
publication status
published
subject
keywords
Hadron-Hadron Scattering, Top Physics
in
Journal of High Energy Physics
volume
2024
issue
7
article number
163
publisher
Springer
external identifiers
  • scopus:85199420138
ISSN
1029-8479
DOI
10.1007/JHEP07(2024)163
language
English
LU publication?
yes
id
60218d76-1945-4d3d-8750-de763c91a997
date added to LUP
2024-09-13 10:30:41
date last changed
2024-09-13 10:31:51
@article{60218d76-1945-4d3d-8750-de763c91a997,
  abstract     = {{Measurements of both the inclusive and differential production cross sections of a top-quark-top-antiquark pair in association with a Z boson (tt¯Z) are presented. Final states with two, three or four isolated leptons (electrons or muons) are targeted. The measurements use the data recorded by the ATLAS detector in pp collisions at s = 13 TeV at the Large Hadron Collider during the years 2015–2018, corresponding to an integrated luminosity of 140 fb−1. The inclusive cross section is measured to be σtt¯Z = 0.86 ± 0.04 (stat.) ± 0.04 (syst.) pb and found to be in agreement with the most advanced Standard Model predictions. The differential measurements are presented as a function of a number of observables that probe the kinematics of the tt¯Z system. Both the absolute and normalised differential cross-section measurements are performed at particle level and parton level for specific fiducial volumes, and are compared with NLO+NNLL theoretical predictions. The results are interpreted in the framework of Standard Model effective field theory and used to set limits on a large number of dimension-6 operators involving the top quark. The first measurement of spin correlations in tt¯Z events is presented: the results are in agreement with the Standard Model expectations, and the null hypothesis of no spin correlations is disfavoured with a significance of 1.8 standard deviations. © The Author(s) 2024.}},
  author       = {{Aad, G. and Åkesson, T.P.A. and Doglioni, C. and Ekman, P.A. and Hedberg, V. and Herde, H. and Konya, B. and Lytken, E. and Poettgen, R. and Simpson, N.D. and Smirnova, O. and Zwalinski, L.}},
  issn         = {{1029-8479}},
  keywords     = {{Hadron-Hadron Scattering; Top Physics}},
  language     = {{eng}},
  number       = {{7}},
  publisher    = {{Springer}},
  series       = {{Journal of High Energy Physics}},
  title        = {{Inclusive and differential cross-section measurements of tt¯Z production in pp collisions at s = 13 TeV with the ATLAS detector, including EFT and spin-correlation interpretations}},
  url          = {{http://dx.doi.org/10.1007/JHEP07(2024)163}},
  doi          = {{10.1007/JHEP07(2024)163}},
  volume       = {{2024}},
  year         = {{2024}},
}