Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Search for leptoquark pair production decaying into te-t¯e+ or tμ-t¯μ+ in multi-lepton final states in pp collisions at s=13TeV with the ATLAS detector

Aad, G. ; Åkesson, T.P.A. LU orcid ; Corrigan, E.E. LU ; Doglioni, C. LU ; Ekman, P.A. LU ; Geisen, J. LU orcid ; Hedberg, V. LU ; Herde, H. LU orcid ; Jarlskog, G. LU and Konya, B. LU , et al. (2024) In European Physical Journal C 84(8).
Abstract
A search for leptoquark pair production decaying into te-t¯e+ or tμ-t¯μ+ in final states with multiple leptons is presented. The search is based on a dataset of pp collisions at s=13TeV recorded with the ATLAS detector during Run 2 of the Large Hadron Collider, corresponding to an integrated luminosity of 139 fb-1. Four signal regions, with the requirement of at least three light leptons (electron or muon) and at least two jets out of which at least one jet is identified as coming from a b-hadron, are considered based on the number of leptons of a given flavour. The main background processes are estimated using dedicated control regions in a simultaneous fit with the signal regions to data. No excess above the Standard Model background... (More)
A search for leptoquark pair production decaying into te-t¯e+ or tμ-t¯μ+ in final states with multiple leptons is presented. The search is based on a dataset of pp collisions at s=13TeV recorded with the ATLAS detector during Run 2 of the Large Hadron Collider, corresponding to an integrated luminosity of 139 fb-1. Four signal regions, with the requirement of at least three light leptons (electron or muon) and at least two jets out of which at least one jet is identified as coming from a b-hadron, are considered based on the number of leptons of a given flavour. The main background processes are estimated using dedicated control regions in a simultaneous fit with the signal regions to data. No excess above the Standard Model background prediction is observed and 95% confidence level limits on the production cross section times branching ratio are derived as a function of the leptoquark mass. Under the assumption of exclusive decays into te- (tμ-), the corresponding lower limit on the scalar mixed-generation leptoquark mass mLQmixd is at 1.58 (1.59) TeV and on the vector leptoquark mass mU~1 at 1.67 (1.67) TeV in the minimal coupling scenario and at 1.95 (1.95) TeV in the Yang–Mills scenario. © The Author(s) 2024. (Less)
Please use this url to cite or link to this publication:
author
; ; ; ; ; ; ; ; and , et al. (More)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; and (Less)
author collaboration
organization
publishing date
type
Contribution to journal
publication status
published
subject
keywords
Colliding beam accelerators, Linear accelerators, Negative ions, Photons, Positive ions, ATLAS detectors, Background prediction, Control region, Final state, Integrated luminosity, Large Hadron Collider, Large-hadron colliders, Leptoquarks, Pair production, The standard model, Hadrons
in
European Physical Journal C
volume
84
issue
8
article number
818
publisher
Springer Nature
external identifiers
  • scopus:85201535468
ISSN
1434-6044
DOI
10.1140/epjc/s10052-024-12975-4
language
English
LU publication?
yes
id
e158ae70-17dd-4bde-88b4-acdd33bb2f17
date added to LUP
2024-10-08 09:36:09
date last changed
2025-04-04 14:28:34
@article{e158ae70-17dd-4bde-88b4-acdd33bb2f17,
  abstract     = {{A search for leptoquark pair production decaying into te-t¯e+ or tμ-t¯μ+ in final states with multiple leptons is presented. The search is based on a dataset of pp collisions at s=13TeV recorded with the ATLAS detector during Run 2 of the Large Hadron Collider, corresponding to an integrated luminosity of 139 fb-1. Four signal regions, with the requirement of at least three light leptons (electron or muon) and at least two jets out of which at least one jet is identified as coming from a b-hadron, are considered based on the number of leptons of a given flavour. The main background processes are estimated using dedicated control regions in a simultaneous fit with the signal regions to data. No excess above the Standard Model background prediction is observed and 95% confidence level limits on the production cross section times branching ratio are derived as a function of the leptoquark mass. Under the assumption of exclusive decays into te- (tμ-), the corresponding lower limit on the scalar mixed-generation leptoquark mass mLQmixd is at 1.58 (1.59) TeV and on the vector leptoquark mass mU~1 at 1.67 (1.67) TeV in the minimal coupling scenario and at 1.95 (1.95) TeV in the Yang–Mills scenario. © The Author(s) 2024.}},
  author       = {{Aad, G. and Åkesson, T.P.A. and Corrigan, E.E. and Doglioni, C. and Ekman, P.A. and Geisen, J. and Hedberg, V. and Herde, H. and Jarlskog, G. and Konya, B. and Lytken, E. and Mjörnmark, J.U. and Poettgen, R. and Simpson, N.D. and Skorda, E. and Smirnova, O. and Zwalinski, L.}},
  issn         = {{1434-6044}},
  keywords     = {{Colliding beam accelerators; Linear accelerators; Negative ions; Photons; Positive ions; ATLAS detectors; Background prediction; Control region; Final state; Integrated luminosity; Large Hadron Collider; Large-hadron colliders; Leptoquarks; Pair production; The standard model; Hadrons}},
  language     = {{eng}},
  number       = {{8}},
  publisher    = {{Springer Nature}},
  series       = {{European Physical Journal C}},
  title        = {{Search for leptoquark pair production decaying into te-t¯e+ or tμ-t¯μ+ in multi-lepton final states in pp collisions at s=13TeV with the ATLAS detector}},
  url          = {{http://dx.doi.org/10.1140/epjc/s10052-024-12975-4}},
  doi          = {{10.1140/epjc/s10052-024-12975-4}},
  volume       = {{84}},
  year         = {{2024}},
}