Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Estimating cardiac mechanical efficiency in a porcine ex situ working heart model

Pigot, Harry LU orcid ; Steen, Stig LU and Soltesz, Kristian LU orcid (2024) 12th IFAC Symposium on Biological and Medical Systems (BMS) In IFAC Proceedings Volumes (IFAC-PapersOnline)
Abstract
We introduce a method for assessing cardiac mechanical efficiency via a porcine ex situ biventricular working heart model, designed to closely replicate physiological conditions and improve the evaluation of donor heart viability for transplantation. The method aims to provide decision support for the safe utilization of hearts that might otherwise be discarded. Quantifying the heart’s pumping work against its chemical energy yield, our model advances traditional assessments by incorporating dynamic flow impedances to simulate real-world cardiac loads. We calculate mechanical efficiency by measuring aortic pressure, cardiac output, coronary flow, and blood-gas parameters in six porcine hearts beating in isolation, outside of the body,... (More)
We introduce a method for assessing cardiac mechanical efficiency via a porcine ex situ biventricular working heart model, designed to closely replicate physiological conditions and improve the evaluation of donor heart viability for transplantation. The method aims to provide decision support for the safe utilization of hearts that might otherwise be discarded. Quantifying the heart’s pumping work against its chemical energy yield, our model advances traditional assessments by incorporating dynamic flow impedances to simulate real-world cardiac loads. We calculate mechanical efficiency by measuring aortic pressure, cardiac output, coronary flow, and blood-gas parameters in six porcine hearts beating in isolation, outside of the body, against computer-controlled dynamic flow impedances. The observed mean mechanical efficiency was 8.0±0.8 % (standard error of the mean), below the physiological norm of 25 %. This discrepancy underscores the influence of ex situ conditions on heart performance, as well as the limitations of standard estimation methods. Impacts of the ex situ setup as well as estimation improvements are discussed. Future research will explore integrating imaging technologies (MRI) to refine mechanical efficiency assessment. (Less)
Please use this url to cite or link to this publication:
author
; and
organization
publishing date
type
Contribution to journal
publication status
in press
subject
keywords
artificial organs and biomechanical systems;, decision support systems, cardiac mechanical efficiency, biomedical system modelling, ex situ working heart model, functional heart assessment
in
IFAC Proceedings Volumes (IFAC-PapersOnline)
publisher
IFAC Secretariat
conference name
12th IFAC Symposium on Biological and Medical Systems (BMS)
conference location
Villingen-Schwenningen, Germany
conference dates
2024-09-11 - 2024-09-13
ISSN
2405-8963
project
Functional ex vivo heart evaluation
language
English
LU publication?
yes
id
11438590-f9e9-4dc8-9091-0b7c3500704c
date added to LUP
2024-05-06 15:32:51
date last changed
2024-05-14 10:38:20
@article{11438590-f9e9-4dc8-9091-0b7c3500704c,
  abstract     = {{We introduce a method for assessing cardiac mechanical efficiency via a porcine ex situ biventricular working heart model, designed to closely replicate physiological conditions and improve the evaluation of donor heart viability for transplantation. The method aims to provide decision support for the safe utilization of hearts that might otherwise be discarded. Quantifying the heart’s pumping work against its chemical energy yield, our model advances traditional assessments by incorporating dynamic flow impedances to simulate real-world cardiac loads. We calculate mechanical efficiency by measuring aortic pressure, cardiac output, coronary flow, and blood-gas parameters in six porcine hearts beating in isolation, outside of the body, against computer-controlled dynamic flow impedances. The observed mean mechanical efficiency was 8.0±0.8 % (standard error of the mean), below the physiological norm of 25 %. This discrepancy underscores the influence of ex situ conditions on heart performance, as well as the limitations of standard estimation methods. Impacts of the ex situ setup as well as estimation improvements are discussed. Future research will explore integrating imaging technologies (MRI) to refine mechanical efficiency assessment.}},
  author       = {{Pigot, Harry and Steen, Stig and Soltesz, Kristian}},
  issn         = {{2405-8963}},
  keywords     = {{artificial organs and biomechanical systems;; decision support systems; cardiac mechanical efficiency; biomedical system modelling; ex situ working heart model; functional heart assessment}},
  language     = {{eng}},
  month        = {{04}},
  publisher    = {{IFAC Secretariat}},
  series       = {{IFAC Proceedings Volumes (IFAC-PapersOnline)}},
  title        = {{Estimating cardiac mechanical efficiency in a porcine <i>ex situ</i> working heart model}},
  url          = {{https://lup.lub.lu.se/search/files/182836707/20240429_BMS24_submission.pdf}},
  year         = {{2024}},
}