Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Measurement of multi-particle azimuthal correlations in pp, p + Pb and low-multiplicity Pb + Pb collisions with the ATLAS detector

Aaboud, M ; Aad, G ; Abbott, B. ; Abdallah, J ; Abdinov, O ; Abeloos, B ; Åkesson, Torsten LU orcid ; Bocchetta, Simona LU ; Doglioni, Caterina LU and Hedberg, Vincent LU , et al. (2017) In European Physical Journal C 77(6).
Abstract
Multi-particle cumulants and corresponding Fourier harmonics are measured for azimuthal angle distributions of charged particles in pp collisions at s = 5.02 and 13 TeV and in p + Pb collisions at sNN = 5.02 TeV, and compared to the results obtained for low-multiplicity Pb+Pb collisions at sNN = 2.76 TeV. These measurements aim to assess the collective nature of particle production. The measurements of multi-particle cumulants confirm the evidence for collective phenomena in p + Pb and low-multiplicity Pb+Pb collisions. On the other hand, the pp results for four-particle cumulants do not demonstrate collective behaviour, indicating that they may be biased by contributions from non-flow correlations. A comparison of multi-particle cumulants... (More)
Multi-particle cumulants and corresponding Fourier harmonics are measured for azimuthal angle distributions of charged particles in pp collisions at s = 5.02 and 13 TeV and in p + Pb collisions at sNN = 5.02 TeV, and compared to the results obtained for low-multiplicity Pb+Pb collisions at sNN = 2.76 TeV. These measurements aim to assess the collective nature of particle production. The measurements of multi-particle cumulants confirm the evidence for collective phenomena in p + Pb and low-multiplicity Pb+Pb collisions. On the other hand, the pp results for four-particle cumulants do not demonstrate collective behaviour, indicating that they may be biased by contributions from non-flow correlations. A comparison of multi-particle cumulants and derived Fourier harmonics across different collision systems is presented as a function of the charged-particle multiplicity. For a given multiplicity, the measured Fourier harmonics are largest in Pb+Pb, smaller in p + Pb and smallest in pp collisions. The pp results show no dependence on the collision energy, nor on the multiplicity. © 2017, CERN for the benefit of the ATLAS collaboration. (Less)
Please use this url to cite or link to this publication:
author
; ; ; ; ; ; ; ; and , et al. (More)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; and (Less)
author collaboration
organization
publishing date
type
Contribution to journal
publication status
published
subject
in
European Physical Journal C
volume
77
issue
6
article number
428
publisher
Springer
external identifiers
  • scopus:85021336984
  • pmid:29200942
ISSN
1434-6044
DOI
10.1140/epjc/s10052-017-4988-1
language
English
LU publication?
yes
additional info
Export Date: 12 July 2017
id
1e170607-fdf5-4aa6-af2a-13ae5c67e34b
date added to LUP
2017-07-12 11:53:11
date last changed
2023-04-07 19:15:03
@article{1e170607-fdf5-4aa6-af2a-13ae5c67e34b,
  abstract     = {{Multi-particle cumulants and corresponding Fourier harmonics are measured for azimuthal angle distributions of charged particles in pp collisions at s = 5.02 and 13 TeV and in p + Pb collisions at sNN = 5.02 TeV, and compared to the results obtained for low-multiplicity Pb+Pb collisions at sNN = 2.76 TeV. These measurements aim to assess the collective nature of particle production. The measurements of multi-particle cumulants confirm the evidence for collective phenomena in p + Pb and low-multiplicity Pb+Pb collisions. On the other hand, the pp results for four-particle cumulants do not demonstrate collective behaviour, indicating that they may be biased by contributions from non-flow correlations. A comparison of multi-particle cumulants and derived Fourier harmonics across different collision systems is presented as a function of the charged-particle multiplicity. For a given multiplicity, the measured Fourier harmonics are largest in Pb+Pb, smaller in p + Pb and smallest in pp collisions. The pp results show no dependence on the collision energy, nor on the multiplicity. © 2017, CERN for the benefit of the ATLAS collaboration.}},
  author       = {{Aaboud, M and Aad, G and Abbott, B. and Abdallah, J and Abdinov, O and Abeloos, B and Åkesson, Torsten and Bocchetta, Simona and Doglioni, Caterina and Hedberg, Vincent and Jarlskog, Göran and Kalderon, Charles and Lytken, Else and Mjörnmark, Ulf and Poulsen, Trine and Smirnova, Oxana and Viazlo, Oleksandr}},
  issn         = {{1434-6044}},
  language     = {{eng}},
  number       = {{6}},
  publisher    = {{Springer}},
  series       = {{European Physical Journal C}},
  title        = {{Measurement of multi-particle azimuthal correlations in pp, p + Pb and low-multiplicity Pb + Pb collisions with the ATLAS detector}},
  url          = {{http://dx.doi.org/10.1140/epjc/s10052-017-4988-1}},
  doi          = {{10.1140/epjc/s10052-017-4988-1}},
  volume       = {{77}},
  year         = {{2017}},
}