Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Revisiting the dynamics of proteins during milk powder hydration using asymmetric flow field-flow fractionation (AF4)

Lie-Piang, Anouk ; Leeman, Mats LU ; Castro, Alejandra LU ; Börjesson, Erik LU and Nilsson, Lars LU (2021) In Current Research in Food Science 4. p.83-92
Abstract

The dynamics of β-casein and casein micelles in the reconstitution of skim milk were revisited in this study. β-casein migrates into casein micelles upon an increase in temperatures due to an increase in the hydrophobic effect and lower calcium-phosphate cluster solubility. This process can be reversed upon cooling. These phenomena are well known in fresh milk and are not yet clearly established for reconstituted milk powder. As milk powder is commonly used as a functional ingredient in food products, it is of interest to investigate the migration of casein micelle β-casein to and from the serum phase in reconstituted milk. This study aimed to use asymmetrical flow field flow fractionation (AF4) in combination with various detectors to... (More)

The dynamics of β-casein and casein micelles in the reconstitution of skim milk were revisited in this study. β-casein migrates into casein micelles upon an increase in temperatures due to an increase in the hydrophobic effect and lower calcium-phosphate cluster solubility. This process can be reversed upon cooling. These phenomena are well known in fresh milk and are not yet clearly established for reconstituted milk powder. As milk powder is commonly used as a functional ingredient in food products, it is of interest to investigate the migration of casein micelle β-casein to and from the serum phase in reconstituted milk. This study aimed to use asymmetrical flow field flow fractionation (AF4) in combination with various detectors to revisit the dynamics of β-casein when reconstituting skim milk at different temperatures. Fluorescence-labelled β-casein was added to fresh and reconstituted skim milk and rapid transport of β-casein into the outer shell of the casein micelles could be observed already after 5 ​min of reconstitution at 50 ​°C. This process stabilized after approximately 5 ​h, which indicates that an equilibrium of β-casein between the serum and the micellar phase was reached. Similar results were found for fresh milk. The apparent density of the casein micelles in the skim milk samples was also found to increase during reconstitution at 50 ​°C. During cold reconstitution of milk powders, the migration of β-casein to the serum was not observed. The results suggest that β-casein was already present in the serum phase upon reconstitution at 6 ​°C. When a sample was reconstituted for 180 ​min at 50 ​°C, the migration of β-casein back into the serum was observed upon cooling the same sample to 6 ​°C. The size of casein micelles in reconstituted milk at 6 ​°C was larger compared to reconstitution at 50 ​°C. With AF4 and the multi-detector approach, the change in concentration and size of casein micelles can be readily investigated and the migration of β-casein can be tracked simultaneously. Therefore, the method is a valuable tool for studies of the properties and changes in various milk samples.

(Less)
Please use this url to cite or link to this publication:
author
; ; ; and
organization
publishing date
type
Contribution to journal
publication status
published
subject
keywords
AF4, Asymmetrical flow field-flow fractionation, Beta-casein, Casein, Milk powder, Reconstitution
in
Current Research in Food Science
volume
4
pages
10 pages
publisher
Elsevier
external identifiers
  • scopus:85102004704
  • pmid:33733238
ISSN
2665-9271
DOI
10.1016/j.crfs.2021.02.004
language
English
LU publication?
yes
id
35313d91-7b94-4900-84d8-bc155f3fbf36
date added to LUP
2021-12-21 15:40:54
date last changed
2024-08-25 05:57:39
@article{35313d91-7b94-4900-84d8-bc155f3fbf36,
  abstract     = {{<p>The dynamics of β-casein and casein micelles in the reconstitution of skim milk were revisited in this study. β-casein migrates into casein micelles upon an increase in temperatures due to an increase in the hydrophobic effect and lower calcium-phosphate cluster solubility. This process can be reversed upon cooling. These phenomena are well known in fresh milk and are not yet clearly established for reconstituted milk powder. As milk powder is commonly used as a functional ingredient in food products, it is of interest to investigate the migration of casein micelle β-casein to and from the serum phase in reconstituted milk. This study aimed to use asymmetrical flow field flow fractionation (AF4) in combination with various detectors to revisit the dynamics of β-casein when reconstituting skim milk at different temperatures. Fluorescence-labelled β-casein was added to fresh and reconstituted skim milk and rapid transport of β-casein into the outer shell of the casein micelles could be observed already after 5 ​min of reconstitution at 50 ​°C. This process stabilized after approximately 5 ​h, which indicates that an equilibrium of β-casein between the serum and the micellar phase was reached. Similar results were found for fresh milk. The apparent density of the casein micelles in the skim milk samples was also found to increase during reconstitution at 50 ​°C. During cold reconstitution of milk powders, the migration of β-casein to the serum was not observed. The results suggest that β-casein was already present in the serum phase upon reconstitution at 6 ​°C. When a sample was reconstituted for 180 ​min at 50 ​°C, the migration of β-casein back into the serum was observed upon cooling the same sample to 6 ​°C. The size of casein micelles in reconstituted milk at 6 ​°C was larger compared to reconstitution at 50 ​°C. With AF4 and the multi-detector approach, the change in concentration and size of casein micelles can be readily investigated and the migration of β-casein can be tracked simultaneously. Therefore, the method is a valuable tool for studies of the properties and changes in various milk samples.</p>}},
  author       = {{Lie-Piang, Anouk and Leeman, Mats and Castro, Alejandra and Börjesson, Erik and Nilsson, Lars}},
  issn         = {{2665-9271}},
  keywords     = {{AF4; Asymmetrical flow field-flow fractionation; Beta-casein; Casein; Milk powder; Reconstitution}},
  language     = {{eng}},
  pages        = {{83--92}},
  publisher    = {{Elsevier}},
  series       = {{Current Research in Food Science}},
  title        = {{Revisiting the dynamics of proteins during milk powder hydration using asymmetric flow field-flow fractionation (AF4)}},
  url          = {{http://dx.doi.org/10.1016/j.crfs.2021.02.004}},
  doi          = {{10.1016/j.crfs.2021.02.004}},
  volume       = {{4}},
  year         = {{2021}},
}